login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Twice-partitioned numbers where the first partition is strict and the latter partitions are constant.
18

%I #16 Jul 17 2018 21:50:50

%S 1,1,2,4,5,9,16,22,28,49,69,94,138,187,257,374,479,639,886,1146,1577,

%T 2103,2676,3534,4620,5910,7542,9816,12650,15986,20538,25740,32632,

%U 41442,51383,64771,81281,100729,125041,155557,192641,236810,293593,359880,441276

%N Twice-partitioned numbers where the first partition is strict and the latter partitions are constant.

%H Alois P. Heinz, <a href="/A279786/b279786.txt">Table of n, a(n) for n = 0..8000</a>

%H Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a>

%F G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*d(j)^k*x^(j*k)/k), where d(j) is the number of the divisors of j (A000005). - _Ilya Gutkovskiy_, Jul 17 2018

%e The a(5)=9 twice-partitions are:

%e ((5)), ((4)(1)), ((3)(2)), ((3)(11)), ((22)(1)),

%e ((111)(2)), ((111)(11)), ((1111)(1)), ((11111)).

%p b:= proc(n, i) option remember;

%p `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1)+

%p `if`(i>n, 0, numtheory[tau](i)*b(n-i, i-1))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..70); # _Alois P. Heinz_, Dec 20 2016

%t nn=20;CoefficientList[Series[Product[(1+DivisorSigma[0,n]x^n),{n,nn}],{x,0,nn}],x]

%Y Cf. A000005, A000009, A063834.

%K nonn

%O 0,3

%A _Gus Wiseman_, Dec 18 2016