Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Feb 20 2023 07:52:30
%S 0,1,1,2,2,3,3,4,4,5,6,8,9,11,12,14,15,17,18,20,20,21,21,22,22,23,23,
%T 24,24,25,26,28,29,31,32,34,35,37,38,40,40,41,41,42,42,43,43,44,44,45,
%U 46,48,49,51,52,54,55,57,58,60,60,61,61,62,62,63,63,64,64
%N Number of odd digits in the decimal expansions of integers 1 to n.
%C From _Bernard Schott_, Feb 19 2023: (Start)
%C Problem 1 of the British Mathematical Olympiad, round 1, in 2016/2017 asked: when the integers 1, 2, 3, ..., 2016 are written down in base 10, how many of the digits in the list are odd? The answer is a(2016) = 4015.
%C The similar sequence but with number of even digits is A358854. (End)
%H Joseph Myers, <a href="/A279766/b279766.txt">Table of n, a(n) for n = 0..1000</a>
%H United Kingdom Mathematics Trust, <a href="https://bmos.ukmt.org.uk/home/bmo1-2017.pdf">2016/17 British Mathematical Olympiad Round 1</a>, Problem 1.
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.
%F a(n) = A196564(A007908(n)). - _Michel Marcus_, Dec 18 2016
%F a(n) = A117804(n+1) - A358854(n) (number of total digits - number of even digits). - _Bernard Schott_, Feb 19 2023
%p a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+
%p nops(select(x-> x::odd, convert(n,base,10))))
%p end:
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Dec 22 2016
%t Table[Count[Flatten@ IntegerDigits@ Range[0, n], d_ /; OddQ@ d], {n, 0, 68}] (* or *)
%t Accumulate@ Table[Count[IntegerDigits@ n, d_ /; OddQ@ d], {n, 0, 68}] (* _Michael De Vlieger_, Dec 22 2016 *)
%Y Cf. A007908, A058183, A117804, A196564, A358854.
%K base,nonn
%O 0,4
%A _Joseph Myers_, Dec 18 2016