login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
14

%I #4 Dec 18 2016 07:44:46

%S 0,0,0,2,2,0,2,6,8,0,5,14,35,26,0,8,26,106,168,80,0,15,48,286,736,766,

%T 240,0,26,84,746,2948,4940,3402,708,0,46,146,1887,11434,29140,32430,

%U 14827,2062,0,80,250,4700,42494,167904,281350,209558,63680,5944,0,139

%N T(n,k)=Number of nXk 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

%C Table starts

%C .0.....0.......2........2..........5...........8............15..............26

%C .0.....2.......6.......14.........26..........48............84.............146

%C .0.....8......35......106........286.........746..........1887............4700

%C .0....26.....168......736.......2948.......11434.........42494..........154886

%C .0....80.....766.....4940......29140......167904........927615.........5029822

%C .0...240....3402....32430.....281350.....2407152......19743140.......158848594

%C .0...708...14827...209558....2672708....33954530.....413326300......4935790522

%C .0..2062...63680..1337624...25057618...472691878....8539248826....151323545378

%C .0..5944..270313..8453760..232453138..6511502806..174560480712...4589874672896

%C .0.16990.1136546.52990574.2137856646.88926626284.3537506044402.137999764109606

%H R. H. Hardin, <a href="/A279741/b279741.txt">Table of n, a(n) for n = 1..199</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1)

%F k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) -a(n-4)

%F k=3: a(n) = 10*a(n-1) -35*a(n-2) +54*a(n-3) -45*a(n-4) +20*a(n-5) -4*a(n-6) for n>7

%F k=4: [order 16] for n>17

%F k=5: [order 25] for n>26

%F k=6: [order 64] for n>65

%F Empirical for row n:

%F n=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) for n>5

%F n=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)

%F n=3: [order 16] for n>18

%F n=4: [order 45] for n>50

%e Some solutions for n=4 k=4

%e ..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..0

%e ..1..0..1..0. .1..0..1..1. .1..0..1..0. .0..1..0..0. .0..1..1..0

%e ..0..1..1..0. .0..0..0..1. .0..1..1..0. .0..1..1..0. .1..0..0..0

%e ..0..1..0..1. .1..0..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..0

%Y Row 1 is A006367(n-1).

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_, Dec 18 2016