%I #4 Dec 18 2016 07:42:02
%S 5,26,286,2948,29140,281350,2672708,25057618,232453138,2137856646,
%T 19520180011,177142880376,1599086960917,14369091541568,
%U 128599776050102,1146851081407532,10195271184154052,90377052821887506,799110404458844621
%N Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Column 5 of A279741.
%H R. H. Hardin, <a href="/A279738/b279738.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 35*a(n-1) -537*a(n-2) +4917*a(n-3) -31037*a(n-4) +147039*a(n-5) -550776*a(n-6) +1684140*a(n-7) -4287367*a(n-8) +9195097*a(n-9) -16722579*a(n-10) +25851599*a(n-11) -33949278*a(n-12) +37773854*a(n-13) -35490491*a(n-14) +28069727*a(n-15) -18639724*a(n-16) +10365480*a(n-17) -4808439*a(n-18) +1847719*a(n-19) -580867*a(n-20) +146321*a(n-21) -28520*a(n-22) +4040*a(n-23) -368*a(n-24) +16*a(n-25) for n>26
%e Some solutions for n=4
%e ..0..1..0..1..1. .0..1..1..0..0. .0..1..0..1..1. .0..1..1..0..0
%e ..1..0..0..0..1. .0..0..1..1..1. .0..0..0..0..0. .0..1..1..1..0
%e ..1..1..0..1..1. .1..0..0..0..1. .0..1..1..1..0. .0..0..1..1..0
%e ..1..0..1..0..1. .0..1..0..0..1. .1..0..1..0..1. .1..0..0..1..0
%Y Cf. A279741.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2016