login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Transpose of array A257943.
0

%I #4 Dec 21 2016 13:52:45

%S 1,2,2,3,5,5,4,8,14,14,5,11,23,41,41,6,14,32,68,122,122,7,17,41,95,

%T 203,365,365,8,20,50,122,284,608,1094,1094,9,23,59,149,365,851,1823,

%U 3281,3281,10,26,68,176,446,1094,2552,5468,9842,9842

%N Transpose of array A257943.

%F A(n,k) = (1 + 3^(k-1)*(2*n - 1))/2, n,k >= 1.

%e Array A begins as:

%e . 1 2 5 14 41 122 365 1094 3281 9842

%e . 2 5 14 41 122 365 1094 3281 9842 29525

%e . 3 8 23 68 203 608 1823 5468 16403 49208

%e . 4 11 32 95 284 851 2552 7655 22964 68891

%e . 5 14 41 122 365 1094 3281 9842 29525 88574

%e . 6 17 50 149 446 1337 4010 12029 36086 108257

%e . 7 20 59 176 527 1580 4739 14216 42647 127940

%e . 8 23 68 203 608 1823 5468 16403 49208 147623

%e . 9 26 77 230 689 2066 6197 18590 55769 167306

%e . 10 29 86 257 770 2309 6926 20777 62330 186989

%t (* Array: *)

%t Grid[Table[(1 + 3^(k - 1)*(2*n - 1))/2, {n, 10}, {k, 10}]]

%t (* Array antidiagonals flattened (gives this sequence): *)

%t Flatten[Table[(1 + 3^(k - 1)*(2*(n - k) + 1))/2, {n, 10}, {k, n}]]

%Y Cf. A191450, A254051, A257943.

%K nonn,tabl

%O 1,2

%A _L. Edson Jeffery_, Dec 17 2016