%I #8 Dec 17 2016 17:51:15
%S 1,1,-1,-1,2,0,-1,0,-1,2,2,-6,3,3,-8,11,-4,-16,30,-15,-24,58,-55,-7,
%T 108,-158,58,173,-357,268,170,-713,831,-98,-1235,2070,-1154,-1641,
%U 4463,-4207,-894,8392,-11527,3917,13077,-26782,19818,13765,-54309,61370,-4901
%N Coefficients in the expansion of ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = sqrt(3).
%H Clark Kimberling, <a href="/A279628/b279628.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: ([s] + [2s]x + [3s]x^2 + ...)/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(2), s = sqrt(3).
%t z = 100;
%t r = Sqrt[2]; f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}];
%t s = Sqrt[3]; g[x_] := g[x] = Sum[Floor[s*(k + 1)] x^k, {k, 0, z}];
%t CoefficientList[Series[g[x]/f[x], {x, 0, z}], x]
%Y Cf. A001951, A022838, A279629.
%K sign,easy
%O 0,5
%A _Clark Kimberling_, Dec 17 2016