login
Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(5)/2.
1

%I #9 Mar 30 2017 04:30:44

%S 1,-2,1,0,0,0,0,0,-1,3,-3,1,0,0,0,0,0,-1,3,-3,1,0,0,0,1,-4,5,-1,-2,1,

%T 0,0,-1,6,-14,15,-6,-1,1,0,0,-1,7,-18,21,-10,0,1,1,-7,18,-18,-3,20,

%U -13,1,0,9,-34,68,-72,29,13,-15,2,0,11,-48,107,-127,69

%N Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(5)/2.

%H Clark Kimberling, <a href="/A279593/b279593.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = sqrt(5)/2.

%t z = 30; r = Sqrt[5]/2;

%t f[x_] := f[x] = Sum[Floor[r*(k + 1)] x^k, {k, 0, z}]; f[x]

%t CoefficientList[Series[1/f[x], {x, 0, 2*z}], x]

%o (PARI) r = sqrt(5)/2;

%o Vec(1/sum(k=0, 70, floor(r*(k + 1))*x^k) + O(x^71)) \\ _Indranil Ghosh_, Mar 30 2017

%Y Cf. A279607.

%K sign,easy

%O 0,2

%A _Clark Kimberling_, Dec 16 2016