login
A279580
T(n,k)=Number of nXk 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
11
0, 0, 0, 2, 4, 0, 4, 36, 40, 0, 14, 304, 944, 352, 0, 40, 2212, 20776, 23072, 3008, 0, 120, 15428, 406200, 1356120, 547168, 25280, 0, 352, 103648, 7630156, 72177144, 86246944, 12701248, 209792, 0, 1032, 680052, 138602548, 3684310576, 12490527012
OFFSET
1,4
COMMENTS
Table starts
.0.......0..........2..............4................14....................40
.0.......4.........36............304..............2212.................15428
.0......40........944..........20776............406200...............7630156
.0.....352......23072........1356120..........72177144............3684310576
.0....3008.....547168.......86246944.......12490527012.........1732429706176
.0...25280...12701248.....5385546376.....2121871518232.......800037452999320
.0..209792..290067328...331573929104...355347019237332....364333887872124232
.0.1723392.6540226304.20185283466808.58835479020749472.164074884296083732404
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 16*a(n-1) -72*a(n-2) +64*a(n-3) -16*a(n-4)
k=3: [order 6] for n>7
k=4: [order 16] for n>17
k=5: [order 28] for n>29
Empirical for row n:
n=1: a(n) = 4*a(n-1) -8*a(n-3) -4*a(n-4) for n>5
n=2: [order 8]
n=3: [order 34] for n>35
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..0. .0..1..1..1. .0..1..1..2. .0..1..2..1. .0..1..2..1
..1..2..1..2. .2..0..0..0. .1..0..0..2. .0..2..2..2. .1..0..0..2
..0..1..0..2. .0..2..2..0. .2..0..2..1. .1..2..1..0. .0..2..2..1
CROSSREFS
Row 1 is A279322.
Sequence in context: A059226 A221655 A221087 * A197513 A097666 A144810
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2016
STATUS
approved