login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n inversion sequences avoiding the patterns 100, 210, 201, and 102.
23

%I #22 Oct 07 2021 04:07:23

%S 1,1,2,6,21,76,277,1016,3756,13998,52554,198568,754316,2878552,

%T 11027384,42384412,163372325,631290168,2444700421,9485463044,

%U 36866810877,143508889270,559399074443,2183269032876,8530724152279,33366805383326,130633854520329,511889287682280

%N Number of length n inversion sequences avoiding the patterns 100, 210, 201, and 102.

%C A length n inversion sequence e_1e_2...e_n is a sequence of integers where 0 <= e_i <= i-1. The term a(n) counts those length n inversion sequences with no entries e_i, e_j, e_k (where i<j<k) such that e_i > e_j and e_i <> e_k. This is the same as the set of length n inversion sequences avoiding 100, 210, 201, and 102.

%H Alois P. Heinz, <a href="/A279560/b279560.txt">Table of n, a(n) for n = 0..1665</a>

%H Megan A. Martinez, Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016.

%F a(n) = binomial(2n-2,n-1) + Sum_{k=2..n-2} Sum_{i=1..k-1} Sum_{u=1..i} Sum_{d=0..u-1} ((i-d+1)/(i+1)*binomial(i+d,d)) for n>0, a(0)=1.

%F a(n) ~ 4^(n-1) / sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 07 2021

%e The length 4 inversion sequences avoiding (100, 210, 201, 102) are 0000, 0001, 0002, 0003, 0010, 0011, 0012, 0013, 0020, 0021, 0022, 0023, 0101, 0110, 0111, 0112, 0113, 0120, 0121, 0122, 0123.

%p a:= proc(n) option remember; `if`(n<4, n!,

%p ((6*(9*n^4-61*n^3+100*n^2+52*n-140))*a(n-1)

%p -(3*(3*n-8))*(9*n^3-38*n^2+3*n+70)*a(n-2)

%p +(2*(2*n-7))*(9*n^3-31*n^2-2*n+60)*a(n-3))

%p / ((9*n^3-58*n^2+87*n+22)*n))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 24 2017

%t a[0] = 1; a[n_] := Binomial[2n-2, n-1] + Sum[(4i Binomial[2i+1, i+1]) / ((i+2)(i+3)), {k, 2, n-2}, {i, 1, k-1}]; Array[a, 30, 0] (* _Jean-François Alcover_, Nov 06 2017 *)

%o (PARI) a(n) = if (n==0, 1, binomial(2*n-2,n-1) + sum(k=2, n-2, sum(i=1,k-1, sum(u=1, i, sum(d=0, u-1, ((i-d+1)/(i+1)*binomial(i+d,d))))))); \\ _Michel Marcus_, Jan 18 2017

%Y Cf. A000108, A263777, A263778, A263779, A263780, A279551, A279552, A279553, A279554, A279555, A279556, A279557, A279558, A279559, A279561, A279562, A279563, A279564, A279565, A279566, A279567, A279568, A279569, A279570, A279571, A279572, A279573.

%K nonn

%O 0,3

%A _Megan A. Martinez_, Jan 17 2017

%E More terms from _Michel Marcus_, Jan 18 2017