Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 23 2016 21:57:53
%S 0,0,1,1,2,2,2,5,6,6,6,9,9,7,7,7,8,12,12,16,16,16,16,19,19,14,14,19,
%T 19,25,25,25,26,26,26,26,26,25,25,25,25,33,33,32,32,32,32,29,29,32,32,
%U 32,32,35,35,35,35,35,35,46,46,45
%N Number of 0's in the binary expansion of the least common multiple of the first n integers.
%H Indranil Ghosh, <a href="/A279515/b279515.txt">Table of n, a(n) for n = 0..10000</a>
%e For n = 10, the LCM of all the numbers from 1 to 10 is 2520 = 100111011000_2, which has a total of 6 0's, so a(10) = 6.
%t Map[DigitCount[#, 2, 0] &, {1}~Join~Table[LCM @@ Range@ n, {n, 61}]] (* _Michael De Vlieger_, Dec 16 2016 *)
%o (Python)
%o def gcd(a, b):
%o while b:
%o a, b = b, a % b
%o return a
%o def lcm(a, b):
%o return a * b // gcd(a, b)
%o def c(*ar):
%o return reduce(lcm, ar)
%o def a(n):
%o if n==0:
%o return 0
%o x=bin(c(*range(1, n+1)))[2:]
%o return x.count("0")
%o for i in range(0, 10001):
%o print str(i)+" "+str(a(i))
%o (PARI) a(n) = my(lcmn = lcm(vector(n, k, k))); #binary(lcmn) - hammingweight(lcmn); \\ _Michel Marcus_, Dec 23 2016
%Y Cf. A003418, A279506.
%K nonn,base
%O 0,5
%A _Indranil Ghosh_, Dec 13 2016