login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279461 Number of nX3 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards. 1

%I

%S 2,6,33,180,1024,5228,26670,134438,670407,3310176,16219930,78973826,

%T 382408399,1842856150,8843787665,42284752666,201514337962,

%U 957534960784,4537926120718,21454758254236,101215638872346,476553258095432

%N Number of nX3 0..1 arrays with no element equal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

%C Column 3 of A279466.

%H R. H. Hardin, <a href="/A279461/b279461.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) -33*a(n-2) +58*a(n-3) -110*a(n-4) +76*a(n-5) -37*a(n-6) +46*a(n-7) +216*a(n-8) -90*a(n-9) +274*a(n-10) -480*a(n-11) -570*a(n-12) +82*a(n-13) -243*a(n-14) +666*a(n-15) +1279*a(n-16) +1154*a(n-17) -450*a(n-18) -3012*a(n-19) -1514*a(n-20) +298*a(n-21) -265*a(n-22) +2182*a(n-23) +4582*a(n-24) +864*a(n-25) -4441*a(n-26) -4314*a(n-27) -91*a(n-28) +2472*a(n-29) +1759*a(n-30) +214*a(n-31) -414*a(n-32) -306*a(n-33) -100*a(n-34) -16*a(n-35) -a(n-36)

%e Some solutions for n=4

%e ..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..1. .0..0..1. .0..1..0

%e ..1..1..0. .1..0..1. .0..1..0. .0..0..1. .1..0..1. .1..1..0. .0..1..1

%e ..0..0..1. .1..0..0. .0..0..0. .1..0..1. .0..0..1. .1..0..1. .1..0..0

%e ..0..1..0. .1..1..0. .1..1..1. .1..1..0. .1..0..1. .1..0..1. .1..1..0

%Y Cf. A279466.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 12 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 18:24 EDT 2022. Contains 354122 sequences. (Running on oeis4.)