login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279447
Number of nonequivalent ways to place 3 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
6
0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880, 60511, 98419, 153608, 233331, 343820, 496076, 699261, 969234, 1318885, 1770185, 2340646, 3059749, 3950618, 5051786, 6393075, 8023756, 9981531, 12328239, 15110740, 18405415, 22269656, 26796504, 32055353, 38158166
OFFSET
1,3
COMMENTS
Column 4 of A279453.
Rotations and reflections of placements are not counted. For numbers if they are to be counted see A279437.
For condition "no more than 2 points on straight lines at any angle", see A235454.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1).
FORMULA
a(n) = (n^6 - 5*n^4 + 14*n^3 - 14*n^2 + 4*n)/48 + IF(MOD(n, 2) = 1, 2*n^3 - 3*n^2 + 1)/16.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11).
G.f.: x^2*(1 + 11*x + 30*x^2 + 79*x^3 + 62*x^4 + 55*x^5 + 4*x^6 - x^7 - x^8) / ((1 - x)^7*(1 + x)^4). - Colin Barker, Dec 17 2016
MATHEMATICA
LinearRecurrence[{3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1}, {0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880}, 35] (* Vincenzo Librandi Dec 17 2016 *)
PROG
(Magma) I:=[0, 1, 14, 73, 301, 890, 2321, 5166, 10654, 20055, 35880]; [n le 11 select I[n] else 3*Self(n-1)+Self(n-2)-11*Self(n-3)+ 6*Self(n-4)+14*Self(n-5)-14*Self(n-6)-6*Self(n-7)+11*Self(n-8)-Self(n-9)-3*Self(n-10)+Self(n-11): n in [1..40]]; // Vincenzo Librandi, Dec 17 2016
(PARI) concat(0, Vec(x^2*(1 + 11*x + 30*x^2 + 79*x^3 + 62*x^4 + 55*x^5 + 4*x^6 - x^7 - x^8) / ((1 - x)^7*(1 + x)^4) + O(x^30))) \\ Colin Barker, Dec 17 2016
CROSSREFS
Same problem but 2, 4..7 points: A014409, A279448, A279449, A279450, A279451.
Sequence in context: A372662 A205328 A328735 * A205590 A369244 A213284
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 17 2016
STATUS
approved