login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279443
Number of ways to place 9 points on an n X n board so that no more than 2 points are on a vertical or horizontal straight line.
8
0, 0, 0, 0, 22650, 4987800, 240023070, 5219088000, 68483325960, 630486309600, 4456523194200, 25647802519680, 125166919041450, 533442526857240, 2029603476250350, 7011735609715200, 22291042191643680, 65914292362262400, 182880685655641440, 479548000781222400
OFFSET
1,5
COMMENTS
Column 9 of triangle A279445.
Rotations and reflections of placements are counted.
LINKS
Index entries for linear recurrences with constant coefficients, signature (19,-171,969,-3876,11628, -27132,50388,-75582,92378,-92378,75582,-50388,27132,-11628,3876, -969,171,-19,1).
FORMULA
a(n) = (n^18 -204*n^16 +1260*n^15 +6846*n^14 -104076*n^13 +394504*n^12 +128520*n^11 -6237075*n^10 +24018372*n^9 -43820196*n^8 +30400020*n^7 +34251148*n^6 -99199296*n^5 +98504496*n^4 -47779200*n^3 +9434880*n^2)/362880; factorized: a(n) = n^2*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*(n^8 +20*n^7 +26*n^6 -820*n^5 -247*n^4 +9704*n^3 -9104*n^2 -14700*n +16380)/9!.
a(n) = SUM(1<=j<=19, C(19,j)*(-1)^(j-1)*a(n-j)).
G.f.: 30*x^5*(755 +151915*x +4970934*x^2 +49653854*x^3 +187307071*x^4 +275138271*x^5 +119386656*x^6 -31251744*x^7 -19595619*x^8 +1706821*x^9 +667466*x^10 -26334*x^11 -2543*x^12 +17*x^13) / (1 -x)^19. - Colin Barker, Dec 24 2016
PROG
(PARI) concat(vector(4), Vec(30*x^5*(755 +151915*x +4970934*x^2 +49653854*x^3 +187307071*x^4 +275138271*x^5 +119386656*x^6 -31251744*x^7 -19595619*x^8 +1706821*x^9 +667466*x^10 -26334*x^11 -2543*x^12 +17*x^13) / (1 -x)^19 + O(x^30))) \\ Colin Barker, Dec 24 2016
CROSSREFS
Same problem but 2..8 points: A083374, A279437, A279438, A279439, A279440, A279441, A279442.
Sequence in context: A335397 A251789 A105378 * A287377 A179726 A287249
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Dec 24 2016
STATUS
approved