Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 24 2016 09:39:47
%S 0,0,0,90,67950,4531950,109425330,1460297160,13112872920,88456195800,
%T 480149029800,2196080372970,8743233946590,31033043111070,
%U 99992483914050,296626638016800,819218054279520,2125440234303840,5218743585428640,12201529135725450,27304286810701950
%N Number of ways to place 8 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
%C Column 9 of triangle A279445.
%C Rotations and reflections of placements are counted.
%H Heinrich Ludwig, <a href="/A279442/b279442.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
%F a(n) = (n^16 -140*n^14 +756*n^13 +2506*n^12 -36540*n^11 +130940*n^10 -117432*n^9 -559615*n^8 +2186100*n^7 -3622360*n^6 +3228876*n^5 -1439892*n^4 +181440*n^3 +45360*n^2)/40320; factorized: a(n) = n^2*(n-1)^2*(n-2)^2*(n-3)^2*(n^8 +12*n^7 -54*n^6 -444*n^5 +1845*n^4 +1392*n^3 -11332*n^2 +9660*n +1260)/8!.
%F a(n) = SUM(1<=j<=17, C(17,j)*(-1)^(j-1)*a(n-j)).
%F G.f.: 90*x^4*(1 +738*x +37656*x^2 +461802*x^3 +1893555*x^4 +2767824*x^5 +1058064*x^6 -331920*x^7 -140913*x^8 +15950*x^9 +3096*x^10 -90*x^11 -3*x^12) / (1 -x)^17. - _Colin Barker_, Dec 23 2016
%t Table[n^2*(n - 1)^2*(n - 2)^2*(n - 3)^2*(n^8 + 12 n^7 - 54 n^6 - 444 n^5 + 1845 n^4 + 1392 n^3 - 11332 n^2 + 9660 n + 1260)/8!, {n, 21}] (* _Michael De Vlieger_, Dec 22 2016 *)
%o (PARI) concat(vector(3), Vec(90*x^4*(1 +738*x +37656*x^2 +461802*x^3 +1893555*x^4 +2767824*x^5 +1058064*x^6 -331920*x^7 -140913*x^8 +15950*x^9 +3096*x^10 -90*x^11 -3*x^12) / (1 -x)^17 + O(x^30))) \\ _Colin Barker_, Dec 23 2016
%Y Cf. A279444, A279445, A197458.
%Y Same problem but 2..7,9 points: A083374, A279437, A279438, A279439, A279440, A279441, A279443.
%K nonn,easy
%O 1,4
%A _Heinrich Ludwig_, Dec 22 2016