Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 05 2024 11:54:02
%S 0,1,90,1428,10600,51525,190806,584080,1552608,3701025,8088850,
%T 16470036,31616520,57743413,101055150,170433600,278290816,441610785,
%U 683206218,1033218100,1530887400,2226630021,3184447750,4484709648,6227340000,8535450625,11559457026,15481719540
%N Number of ways to place 4 points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.
%C Column 5 of triangle A279445.
%C Rotations and reflections of placements are counted. For numbers if they are to be ignored see A279448.
%C For condition "no more than 2 points on straight lines at any angle", see A175383.
%H Heinrich Ludwig, <a href="/A279438/b279438.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).
%F a(n) = (n^8 - 14*n^6 + 30*n^5 - 17*n^4 - 6*n^3 + 6*n^2)/24.
%F a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).
%F G.f.: x^2*(1 + 81*x + 654*x^2 + 904*x^3 + 99*x^4 - 57*x^5 - 2*x^6) / (1 - x)^9. - _Colin Barker_, Dec 13 2016
%t Table[(n^8 - 14 n^6 + 30 n^5 - 17 n^4 - 6 n^3 + 6 n^2)/24, {n, 28}] (* _Michael De Vlieger_, Dec 12 2016 *)
%t LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,1,90,1428,10600,51525,190806,584080,1552608},30] (* _Harvey P. Dale_, Sep 05 2024 *)
%o (PARI) concat(0, Vec(x^2*(1 + 81*x + 654*x^2 + 904*x^3 + 99*x^4 - 57*x^5 - 2*x^6) / (1 - x)^9 + O(x^30))) \\ _Colin Barker_, Dec 13 2016
%o (PARI) a(n) = (n^6 - 14*n^4 + 30*n^3 - 17*n^2 - 6*n + 6)*n^2/24 \\ _Charles R Greathouse IV_, Dec 13 2016
%Y Cf. A175383, A249448, A279444, A279445, A197458.
%Y Same problem but 2,3,5..9 points: A083374, A279437, A279439, A279440, A279441, A279442, A279443.
%K nonn,easy
%O 1,3
%A _Heinrich Ludwig_, Dec 12 2016