OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..267
A. Bundy, Simon Colton, T. Walsh, HR - A system for Machine Discovery in Finite Algebras, ECAI 1998.
S. Colton, Refactorable Numbers - A Machine Invention, J. Integer Sequences, Vol. 2, 1999, #2.
Robert E. Kennedy and Curtis N. Cooper, Tau numbers, natural density and Hardy and Wright's Theorem 437, International Journal of Mathematics and Mathematical Sciences, 13:2 (1990), pp. 383-386.
Claudia Spiro, How often is the number of divisors of n a divisor of n?, J. Number Theory 21 (1985), no. 1, 81-100.
Vladimir Letsko, Mathematical Marathon, Problem 216 (in Russian)
EXAMPLE
8 is in the sequence because 8 is divisible by tau(8) and at the same time 8 divides 24 which is the least number having exactly 8 divisors.
MATHEMATICA
Function[s, Select[TakeWhile[#, KeyExistsQ[s, #] &], Divisible[Lookup[s, #], #] &] &@ Select[Range@ 3000, Divisible[#, DivisorSigma[0, #]] &]]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Dec 11 2016
STATUS
approved