login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-composition of the Pell numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000129.
0

%I #7 Apr 02 2019 19:19:13

%S 0,1,4,18,82,377,1740,8045,37226,172314,797744,3693493,17101128,

%T 79180525,366618808,1697509962,7859781454,36392245541,168502887396,

%U 780199897985,3612471696230,16726421117538,77446465948772,358591660029577,1660346632032144,7687716275234809,35595568065121900,164814155562334914

%N Self-composition of the Pell numbers; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000129.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellNumber.html">Pell Number</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5,-6,-1).

%F G.f.: x*(1 - 2*x - x^2)/(1 - 6*x + 5*x^2 + 6*x^3 + x^4).

%F a(n) = 6*a(n-1) - 5*a(n-2) - 6*a(n-3) - a(n-4).

%t CoefficientList[Series[x (1 - 2 x - x^2)/(1 - 6 x + 5 x^2 + 6 x^3 + x^4), {x, 0, 27}], x]

%t LinearRecurrence[{6, -5, -6, -1}, {0, 1, 4, 18}, 28]

%Y Cf. A000129, A270863.

%K nonn,easy

%O 0,3

%A _Ilya Gutkovskiy_, Dec 09 2016