Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 May 08 2017 00:24:34
%S 1,1,3,12,57,320,2065,14954,119585,1044184,9867633,100185294,
%T 1086173121,12510549116,152422123321,1956974934290,26391647743937,
%U 372769201632784,5500416368181921,84594395013757398,1353277808896178145,22476374660911200068,386925983827921358665,6893254434792968631674
%N Exponential transform of the Pell numbers.
%H M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Eric W. Weisstein MathWorld, <a href="http://mathworld.wolfram.com/ExponentialTransform.html">Exponential Transform</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PellNumber.html">Pell Number</a>
%F E.g.f.: exp(exp(x)*sinh(sqrt(2)*x)/sqrt(2)).
%e E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 57*x^4/4! + 320*x^5/5! + 2065*x^6/6! + ...
%t Range[0, 23]! CoefficientList[Series[Exp[Exp[x] Sinh[Sqrt[2] x]/Sqrt[2]], {x, 0, 23}], x]
%o (PARI) x='x + O('x^30); round( Vec(serlaplace(exp(exp(x)*sinh(sqrt(2)*x) /sqrt(2)))) ) \\ _G. C. Greubel_, Dec 13 2016
%Y Cf. A000129, A256180.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Dec 12 2016