login
Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1

%I #4 Dec 06 2016 22:53:22

%S 2,4,20,72,255,874,2903,9336,29578,92528,285992,875912,2662819,

%T 8042606,24156735,72211820,214959872,637526372,1884571600,5554575752,

%U 16328272725,47884030342,140118979793,409205295972,1192876666588,3471548282192

%N Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

%C Column 3 of A279158.

%H R. H. Hardin, <a href="/A279153/b279153.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -24*a(n-2) +44*a(n-3) -90*a(n-4) +158*a(n-5) -168*a(n-6) +208*a(n-7) -261*a(n-8) +128*a(n-9) -149*a(n-10) +188*a(n-11) -12*a(n-12) +162*a(n-13) -130*a(n-14) -56*a(n-15) -80*a(n-16) +31*a(n-18) +56*a(n-19) +4*a(n-20) -16*a(n-21) -4*a(n-22) for n>23

%e Some solutions for n=4

%e ..0..0..1. .0..0..1. .0..1..1. .0..1..0. .0..1..0. .0..1..0. .0..1..1

%e ..1..1..0. .1..0..1. .0..1..0. .0..1..0. .1..0..1. .0..1..1. .1..0..0

%e ..0..0..0. .0..1..0. .0..1..0. .1..0..0. .1..0..0. .0..0..0. .0..1..0

%e ..1..1..1. .1..0..1. .0..1..0. .0..1..1. .1..0..1. .1..1..1. .0..1..0

%Y Cf. A279158.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 06 2016