login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).
3

%I #20 Jun 01 2021 08:05:26

%S 1,1,1,1,2,3,1,6,8,3,6,1,24,30,20,20,15,10,1,120,144,90,90,40,120,40,

%T 15,45,15,1,720,840,504,504,420,630,210,280,210,420,70,105,105,21,1,

%U 5040,5760,3360,3360,2688,4032,1344,1260,3360,1260,2520,420,1120,1120,1680,1120,112,105,420,210,28,1

%N Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).

%C The ordering of integer partitions used in this version is also called:

%C - canonical ordering

%C - graded reverse lexicographic ordering

%C - magma (software) ordering

%C by opposition to the ordering used by Abramowitz and Stegun.

%H Alois P. Heinz, <a href="/A279038/b279038.txt">Rows n = 0..28, flattened</a>

%e First rows are:

%e 1

%e 1

%e 1 1

%e 2 3 1

%e 6 8 3 6 1

%e 24 30 20 20 15 10 1

%e 120 144 90 90 40 120 40 15 45 15 1

%e 720 840 504 504 420 630 210 280 210 420 70 105 105 21 1

%e ...

%p b:= proc(n, i) option remember; `if`(n=0, [1],

%p `if`(i<1, [], [seq(map(x-> x*i^j*j!,

%p b(n-i*j, i-1))[], j=[iquo(n, i)-t$t=0..n/i])]))

%p end:

%p T:= n-> map(x-> n!/x, b(n$2))[]:

%p seq(T(n), n=0..10); # _Alois P. Heinz_, Dec 04 2016

%t Flatten[Table[

%t Map[n!/Times @@ ((First[#]^Length[#]*Factorial[Length[#]]) & /@

%t Split[#]) &, IntegerPartitions[n]], {n, 1, 8}]]

%t (* Second program: *)

%t b[n_, i_] := b[n, i] = If[n == 0, {1},

%t If[i < 1, {}, Flatten@Table[#*i^j*j!& /@

%t b[n - i*j, i - 1], {j, Quotient[n, i] - Range[0, n/i]}]]];

%t T[n_] := n!/#& /@ b[n, n];

%t T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, Jun 01 2021, after _Alois P. Heinz_ *)

%Y Cf. A000041 (number of partitions of n, length of each row).

%Y Cf. A128628 (triangle of partition lengths)

%Y Cf. A036039 (a different ordering), A102189 (row reversed version of A036039).

%Y Row sums give A000142.

%K nonn,tabf,look,easy

%O 0,5

%A _David W. Wilson_ and _Olivier Gérard_, Dec 04 2016

%E One term for row n=0 prepended by _Alois P. Heinz_, Dec 04 2016