login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form (3h+2)*3^(2k)-1 or (3h+1)*3^(2k+1)-1 for h,k in N.
3

%I #30 Nov 06 2021 23:17:26

%S 1,2,4,7,10,11,13,16,17,19,20,22,25,26,28,29,31,34,37,38,40,43,44,46,

%T 47,49,52,55,56,58,61,64,65,67,70,71,73,74,76,79,82,83,85,88,91,92,94,

%U 97,98,100,101,103,106,107,109,110,112,115,118,119,121,124,125,127,128,130

%N Numbers of the form (3h+2)*3^(2k)-1 or (3h+1)*3^(2k+1)-1 for h,k in N.

%C n is in the sequence if and only if either n == 1, 2, 4, or 7 (mod 9) or n == 8 (mod 9) and (n-8)/9 is in the sequence. - _Robert Israel_, Dec 18 2016

%H Ray Chandler, <a href="/A278997/b278997.txt">Table of n, a(n) for n = 1..10000</a>

%H Hao Fu and G.-N. Han, <a href="https://arxiv.org/abs/1601.04370">Computer assisted proof for Apwenian sequences related to Hankel determinants</a>, arXiv preprint arXiv:1601.04370 [math.NT], 2016. See sequence "K" in Section 2.1.

%p filter:= proc(n) local m;

%p m:= padic:-ordp(n+1,3);

%p (n+1)/3^m mod 3 = 2 - (m mod 2)

%p end proc:

%p select(filter, [$0..100]); # _Robert Israel_, Dec 18 2016

%t isok[n_]:=Module[{ord=IntegerExponent[n+1,3]},Mod[(n+1)/3^ord,3]!=Mod[ord,2]+1];Select[Range[0,100],isok](* _Ray Chandler_, Dec 17 2016 *)

%Y Complement of A278996.

%Y Positions of 1's in A156595.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Dec 07 2016

%E More terms from _Ray Chandler_, Dec 17 2016