Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 29 2019 08:24:33
%S 1,1,2,3,4,2,6,6,8,6,10,7,12,6,8,14,16,14,18,12,14,14,22,12,24,18,24,
%T 18,28,11,30,28,26,30,26,28,36,30,30,27,40,20,42,30,32,30,46,32,48,42,
%U 32,38,52,36,46,43,50,42,58,32,60,30,52,60,50,48,66,60,50
%N a(n) is the number of k, 1<=k<=n, such that gcd(n,k) divides binomial(n,k).
%C Length of row n of A278961.
%C a(n) is odd if and only if n = 1 or n is in A048618.
%C a(n) <= n-1 for n>1.
%C a(n) = n-1 if n is a prime or the square of a prime.
%C a(n) >= A000010(n).
%H Robert Israel, <a href="/A278963/b278963.txt">Table of n, a(n) for n = 1..10000</a>
%e a(8) = 6 because gcd(8,k) divides binomial(8,k) for k=1,2,3,5,6,7 but not k=4 or k=8.
%p f:= proc(n,m) if binomial(n,m) mod igcd(n,m) = 0 then m else NULL fi end proc:
%p [seq(nops([seq(f(n,m),m=1..n)]),n=1..200)];
%t a[n_] := Sum[Boole[Divisible[Binomial[n, k], GCD[n, k]]], {k, 1, n}];
%t Array[a, 100] (* _Jean-François Alcover_, Apr 29 2019 *)
%o (PARI) a(n) = sum(k=1, n, (binomial(n, k) % gcd(n, k))==0); \\ _Michel Marcus_, Dec 04 2016
%Y Cf. A000010, A048618, A278961.
%K nonn
%O 1,3
%A _Robert Israel_, Dec 02 2016