login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2).
1

%I #19 Apr 14 2022 15:17:54

%S 1,1,14,146275425484,558429168112511379835233509679413804180016

%N First series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2).

%C If we regard Bell(k^2) as the k-th Stieltjes moment for k>=0, then the solution of the Stieltjes moment problem is given in the P. Blasiak et al. reference, see below. We conjecture that a(n)>0 for n>=0. The positivity of these Hankel determinants a(n), n>=0 is one of the conditions for the existence of a positive solution. Apparently this solution is not unique.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://arxiv.org/abs/quant-ph/0303030">Dobinsky-type relations and the log-normal distribution</a>, J. Phys. A: Math. Gen. 36, L273 (2003), arXiv: quant-ph/0303030, 2003.

%p with(LinearAlgebra), with(combinat):

%p h20:=(i,j)->bell((i+j-2)^2):

%p seq(Determinant(Matrix(kk,kk,h20)),kk=0..6);

%t Table[Det[Table[BellB[(i + j - 2)^2], {i, n}, {j, n}]], {n, 6}], n=>1.

%Y Cf. A000110, A277829, A278770, A278868, A278860.

%K nonn

%O 0,3

%A _Karol A. Penson_, Nov 30 2016