login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).
3

%I #22 Mar 26 2023 10:47:55

%S 1,2,30,672,18150,546546,17672928,600935040,21212454582,770748371250,

%T 28657235757150,1085694550387200,41778588391394400,

%U 1628982594897249312,64234570537702934400,2557710564063135005184,102714012593435476016982,4155894894567674772785250,169274181059121504574121550,6935873114065443534326340000,285716428631735196825345889350,11826871503027977442890882704050,491714173272153004121882711232000

%N a(n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).

%C Central terms of triangles A278881 and A278882; a(n) = A278881(2*n,n) for n>=0.

%H Seiichi Manyama, <a href="/A278884/b278884.txt">Table of n, a(n) for n = 0..606</a>

%F 4*n^2*(2*n-1)*(2*n+1)*a(n) -9*(3*n-1)^2*(3*n-2)^2*a(n-1)=0. - _R. J. Mathar_, Dec 02 2016

%t Table[(Binomial[3n-1,n]Binomial[3n,n])/(2n+1),{n,0,50}] (* _Harvey P. Dale_, Mar 26 2023 *)

%o (PARI) {a(n) = binomial(3*n-1,n) * binomial(3*n,n) / (2*n+1)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A278881, A278882.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Nov 29 2016