login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of tilings of a 2 X n rectangle using pentominoes of any shape and monominoes.
2

%I #12 Feb 06 2017 12:35:42

%S 1,1,1,7,25,50,155,508,1343,3800,11438,32525,92333,268766,774302,

%T 2216976,6392865,18425916,52958070,152425812,438973764,1263109849,

%U 3634965137,10463959311,30116734921,86675829307,249478723992,718056248229,2066658063664,5948257601097

%N Number of tilings of a 2 X n rectangle using pentominoes of any shape and monominoes.

%H Alois P. Heinz, <a href="/A278874/b278874.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a>

%F G.f.: -(x^10 +x^8 -x^6 -6*x^5 -x^4 -5*x^3 +1) / (x^15 +x^13 -2*x^11 -11*x^10 -2*x^9 -10*x^8 +x^7 +9*x^6 +12*x^5 +8*x^4 +11*x^3 +x -1).

%e a(3) = 7:

%e ._____. ._____. ._____. ._____. ._____. ._____. ._____.

%e |_|_|_| | |_| | | ._. | | ._| |_. | | |_| |_| |

%e |_|_|_| |_____| |_|_|_| |___|_| |_|___| |_____| |_____| .

%Y Column k=2 of A278657.

%K nonn,easy

%O 0,4

%A _Alois P. Heinz_, Nov 29 2016