login
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 105", based on the 5-celled von Neumann neighborhood.
4

%I #16 Nov 30 2016 13:00:31

%S 1,0,6,1,16,7,120,71,32,991,512,255,7552,767,31872,11647,119296,48639,

%T 475136,190463,1931264,526335,8241152,2269183,31285248,2662399,

%U 105283584,99385343,22249472,1010302975,319717376,4095574015,1278738432,17054040063,7262961664

%N Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 105", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A278863/b278863.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A278863/a278863.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];

%t code=105; stages=128;

%t rule=IntegerDigits[code,2,10];

%t g=2*stages+1; (* Maximum size of grid *)

%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)

%t ca=a;

%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];

%t PrependTo[ca,a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k=(Length[ca[[1]]]+1)/2;

%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];

%t Table[FromDigits[Part[ca[[i]][[i]],Range[i,2*i-1]],2], {i,1,stages-1}]

%Y Cf. A278719, A278739, A278859.

%K nonn,easy

%O 0,3

%A _Robert Price_, Nov 30 2016