%I
%S 0,0,0,4,44,4,65,1713,1713,65,456,34348,145208,34348,456,2128,468496,
%T 7196852,7196852,468496,2128,7728,4888659,263134490,1038462658,
%U 263134490,4888659,7728,23607,41698446,7804657491,118098679534,118098679534
%N T(n,k)=Number of nXk 0..3 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly two mistakes.
%C Table starts
%C .....0..........0..............4..................65......................456
%C .....0.........44...........1713...............34348...................468496
%C .....4.......1713.........145208.............7196852................263134490
%C ....65......34348........7196852..........1038462658.............118098679534
%C ...456.....468496......263134490........118098679534...........44796204800108
%C ..2128....4888659.....7804657491......11262497170744........14688350983557860
%C ..7728...41698446...197112382716.....935318457135084......4251350673984802232
%C .23607..303361302..4361870602212...69345852411053594...1107217648453587546275
%C .63460.1938464178.86190316947578.4667384731526157594.263642550140680566002158
%H R. H. Hardin, <a href="/A278798/b278798.txt">Table of n, a(n) for n = 1..111</a>
%F Empirical for column k:
%F k=1: [polynomial of degree 11]
%F k=2: [polynomial of degree 44]
%F k=3: [polynomial of degree 173]
%e Some solutions for n=3 k=4
%e ..0..0..0..2. .0..0..0..3. .0..0..3..0. .0..1..1..0. .0..0..0..3
%e ..0..0..3..2. .1..1..3..3. .1..1..1..2. .1..1..0..1. .0..1..1..2
%e ..1..1..0..1. .1..1..3..3. .1..0..2..2. .1..0..0..3. .0..3..1..0
%Y Column 1 is A278547.
%K nonn,tabl
%O 1,4
%A _R. H. Hardin_, Nov 28 2016
