login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278727
T(n,k)=Number of nXk 0..3 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order.
7
4, 10, 10, 20, 60, 20, 35, 275, 275, 35, 56, 1050, 3232, 1050, 56, 84, 3492, 33466, 33466, 3492, 84, 120, 10401, 306070, 1058494, 306070, 10401, 120, 165, 28288, 2487889, 30942600, 30942600, 2487889, 28288, 165, 220, 71266, 18151220, 815294800
OFFSET
1,1
COMMENTS
Table starts
...4.....10........20............35.................56.....................84
..10.....60.......275..........1050...............3492..................10401
..20....275......3232.........33466.............306070................2487889
..35...1050.....33466.......1058494...........30942600..............815294800
..56...3492....306070......30942600.........3062815568...........279368748599
..84..10401...2487889.....815294800.......279368748599.........90462380211862
.120..28288..18151220...19328645044.....23161560633508......26947618206791521
.165..71266.120104810..414671691083...1747727428639023....7361981179311574929
.220.168155.727684612.8109321869307.120668752462156921.1850980180963910285369
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1
k=2: [polynomial of degree 12]
k=3: [polynomial of degree 45]
EXAMPLE
Some solutions for n=3 k=4
..1..1..1..0. .2..2..0..0. .2..1..1..0. .3..1..1..0. .2..1..1..0
..2..1..1..1. .3..0..3..0. .2..1..1..2. .3..2..2..2. .2..2..1..0
..3..2..1..1. .3..1..3..2. .2..2..0..1. .3..3..2..3. .3..1..3..0
CROSSREFS
Column 1 is A000292(n+1).
Diagonal is A229771.
Sequence in context: A352753 A310336 A227060 * A184129 A202581 A201729
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 27 2016
STATUS
approved