login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278727 T(n,k)=Number of nXk 0..3 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order. 7
4, 10, 10, 20, 60, 20, 35, 275, 275, 35, 56, 1050, 3232, 1050, 56, 84, 3492, 33466, 33466, 3492, 84, 120, 10401, 306070, 1058494, 306070, 10401, 120, 165, 28288, 2487889, 30942600, 30942600, 2487889, 28288, 165, 220, 71266, 18151220, 815294800 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Table starts
...4.....10........20............35.................56.....................84
..10.....60.......275..........1050...............3492..................10401
..20....275......3232.........33466.............306070................2487889
..35...1050.....33466.......1058494...........30942600..............815294800
..56...3492....306070......30942600.........3062815568...........279368748599
..84..10401...2487889.....815294800.......279368748599.........90462380211862
.120..28288..18151220...19328645044.....23161560633508......26947618206791521
.165..71266.120104810..414671691083...1747727428639023....7361981179311574929
.220.168155.727684612.8109321869307.120668752462156921.1850980180963910285369
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1
k=2: [polynomial of degree 12]
k=3: [polynomial of degree 45]
EXAMPLE
Some solutions for n=3 k=4
..1..1..1..0. .2..2..0..0. .2..1..1..0. .3..1..1..0. .2..1..1..0
..2..1..1..1. .3..0..3..0. .2..1..1..2. .3..2..2..2. .2..2..1..0
..3..2..1..1. .3..1..3..2. .2..2..0..1. .3..3..2..3. .3..1..3..0
CROSSREFS
Column 1 is A000292(n+1).
Diagonal is A229771.
Sequence in context: A352753 A310336 A227060 * A184129 A202581 A201729
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 27 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 04:59 EDT 2024. Contains 374377 sequences. (Running on oeis4.)