%I #20 Sep 08 2022 08:46:18
%S 1,18,18,8,1,8,5,1,1,5,18,1,1,1,18,14,14,14,14,14,14,16,1,16,1,16,1,
%T 16,27,27,1,27,27,1,27,27,5,1,1,1,1,1,1,1,5,22,22,22,22,22,22,22,22,
%U 22,22,72,1,1,1,72,1,72,1,1,1,72,13,13,13,13,1,13,13,1,13,13,13,13
%N Triangle read by rows: T(k, h) gives the denominators of the Dedekind sums s(h, k) with gcd(h, k) = 1 or 0 otherwise.
%C For the numerators see A278715, also for references and details of the Dedekind sums s(h, k).
%H G. C. Greubel, <a href="/A278716/b278716.txt">Rows n=2..100 of triangle, flattened</a>
%F T(k ,h) = denominator(s(h,k)) with the Dedekind sums s(h,k) given in a comment on A278715 and gcd(h,k) = 1. k >= 2, h = 1, 2, ..., k-1. If gcd(h,k) > 1 then T(h, k) = 1 (from s(h,k) put to 0).
%e The triangle T(k, h) begins (here l is used if gcd(h, k) > 1 instead of 1):
%e k\h 1 2 3 4 5 6 7 8 9 10 11 12
%e 2: 1
%e 3: 18 18
%e 4: 8 l 8
%e 5: 5 1 1 5
%e 6: 18 l l l 18
%e 7: 14 14 14 14 14 14
%e 8: 16 l 16 l 16 l 16
%e 9: 27 27 l 27 27 l 27 27
%e 10: 5 l 1 l l l 1 l 5
%e 11: 22 22 22 22 22 22 22 22 22 22
%e 12: 72 l l l 72 l 72 l l l 72
%e 13: 13 13 13 13 1 13 13 1 13 13 13 13
%e ...
%e n = 14: 14 l 14 l 14 l l l 14 l 14 l 14,
%e n = 15: 90 18 l 90 l l 18 18 l l 90 l 18 90.
%e ...
%t T[n_, k_]:= If[GCD[n, k] == 1, Sum[(j/n)*(k*j/n - Floor[k*j/n] - 1/2), {j, 1, n - 1}], 0]; Denominator[Table[T[n, k], {n, 2, 15}, {k, 1, n - 1}]]//Flatten (* _G. C. Greubel_, Nov 22 2018 *)
%o (PARI) {T(n,k) = if(gcd(n,k)==1, sum(j=1,n-1, (j/n)*(k*j/n - floor(k*j/n) - 1/2)), 0)};
%o for(n=2,15, for(k=1,n-1, print1(denominator(T(n,k)), ", "))) \\ _G. C. Greubel_, Nov 22 2018
%o (Magma) [[GCD(n,k) eq 1 select Denominator((&+[(j/n)*(k*j/n - Floor(k*j/n) - 1/2): j in [1..(n-1)]])) else 0: k in [1..(n-1)]]: n in [2..10]]; // _G. C. Greubel_, Nov 22 2018
%o (Sage)
%o def T(n,k):
%o if gcd(n,k)==1:
%o return denominator(sum((j/n)*(k*j/n - floor(k*j/n) - 1/2) for j in (1..(n-1))))
%o elif gcd(n,k)!=1:
%o return 0
%o else:
%o 0
%o [[T(n,k) for k in (1..n-1)] for n in (2..15)] # _G. C. Greubel_, Nov 22 2018
%Y Cf. A278715.
%K nonn,tabl,frac,easy
%O 2,2
%A _Wolfdieter Lang_, Nov 28 2016