%I #9 Nov 27 2016 16:02:58
%S 1,3,6,12,24,50,102,196,388,804,1652,3156,6228,12884,26452,50516,
%T 99668,206164,423252,808276,1594708,3298644,6772052,12932436,25515348,
%U 52778324,108352852,206918996,408245588,844453204,1733645652,3310703956,6531929428
%N Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 62", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H Robert Price, <a href="/A278666/b278666.txt">Table of n, a(n) for n = 0..126</a>
%H Robert Price, <a href="/A278666/a278666.tmp.txt">Diagrams of first 20 stages</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Nov 26 2016: (Start)
%F a(n) = a(n-1) + 16*a(n-4) - 16*a(n-5) for n>7.
%F G.f.: (1 +2*x +3*x^2 +6*x^3 -4*x^4 -6*x^5 +4*x^6 -2*x^7 +16*x^10) / ((1 -x)*(1 -2*x)*(1 +2*x)*(1 +4*x^2)).
%F (End)
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=62; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t Table[FromDigits[Part[ca[[i]][[i]],Range[1,i]],2], {i,1,stages-1}]
%Y Cf. A278664, A278665, A278667.
%K nonn,easy
%O 0,2
%A _Robert Price_, Nov 25 2016