Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 06 2017 23:30:42
%S 1,0,5,7,45,121,533,1800,7157,26239,101640,384583,1483925,5693247,
%T 22013059,85076183,330014421,1281349195,4985766650,19422653367,
%U 75775163028,295953650376,1157212653030,4529183513913,17743019073381,69565441895001
%N a(n) = Sum_{j=0..n/2} binomial(n-j-1,n-2*j)*binomial(2*n+1,j).
%H G. C. Greubel, <a href="/A278618/b278618.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: x*A(x)/C(x)*B(C(x)), where
%F A(x) = (12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x)),
%F B(x) = 1/((x+1)*sqrt(-3*x^2-2*x+1)),
%F C(x) = sqrt(12*x+2*sqrt(1-4*x)+2)/4-sqrt(1-4*x)/4-1/4.
%F a(n) ~ (1 - 1/sqrt(5)) * 4^n / sqrt(Pi*n). - _Vaclav Kotesovec_, Nov 24 2016
%F a(n) = (2*n + 1)*3F2(1-n/2,3/2-n/2,-2*n; 2,2-n; 4) for n>1. - _Ilya Gutkovskiy_, Nov 24 2016
%F Conjecture: 2*n*(5*n-8)*(2*n-1)*(n+1)*a(n) -n*(115*n^3-344*n^2+299*n-82)*a(n-1) -4*(2*n-1)*(5*n^3+27*n^2-74*n+30)*a(n-2) +36*(n-2)*(5*n-3)*(2*n-1)*(2*n-3)*a(n-3)=0. - _R. J. Mathar_, Dec 02 2016
%t Table[Sum[Binomial[n - j - 1, n - 2*j]*Binomial[2*n + 1, j], {j, 0, n/2}], {n,0,50}] (* _G. C. Greubel_, Jun 06 2017 *)
%o (Maxima)
%o A(x):=(12-4/sqrt(1-4*x))/(8*sqrt(12*x+2*sqrt(1-4*x)+2))+1/(2*sqrt(1-4*x));
%o B(x):=1/((x+1)*sqrt(-3*x^2-2*x+1));
%o C(x):=sqrt(12*x+2*sqrt(1-4*x)+2)/4-sqrt(1-4*x)/4-1/4;
%o taylor(x*A(x)/C(x)*B(C(x)),x,0,20);
%o (PARI) for(n=0,25, print1(sum(j=0,n, binomial(n-j-1,n-2*j)*binomial(2*n+1,j)), ", ")) \\ _G. C. Greubel_, Jun 06 2017
%Y Cf. A005043, A055113.
%K nonn
%O 0,3
%A _Vladimir Kruchinin_, Nov 23 2016