login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that Jacobi(n,23) = 1.
4

%I #15 Jun 25 2020 19:20:32

%S 1,2,3,4,6,8,9,12,13,16,18,24,25,26,27,29,31,32,35,36,39,41,47,48,49,

%T 50,52,54,55,58,59,62,64,70,71,72,73,75,77,78,81,82,85,87,93,94,95,96,

%U 98,100,101,104,105,108,110,116,117,118,119,121,123,124,127,128,131,133,139,140,141,142,144,146

%N Numbers n such that Jacobi(n,23) = 1.

%C Important for the study of Ramanujan numbers A000594.

%C The first 11 terms, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18, are the quadratic residues mod 23 (see row 23 of A063987).

%H Colin Barker, <a href="/A278580/b278580.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,1,-1).

%F From _Colin Barker_, Nov 30 2016: (Start)

%F a(n+11) = a(n) + 23.

%F a(n) = a(n-1) + a(n-11) - a(n-12) for n>12.

%F G.f.: x*(1 +x +x^2 +x^3 +2*x^4 +2*x^5 +x^6 +3*x^7 +x^8 +3*x^9 +2*x^10 +5*x^11) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10))

%F (End)

%t LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,6,8,9,12,13,16,18,24},90] (* _Harvey P. Dale_, Jun 25 2020 *)

%o (PARI) Vec(x*(1+x+x^2+x^3+2*x^4+2*x^5+x^6+3*x^7+x^8+3*x^9+2*x^10+5*x^11) / ((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10)) + O(x^100)) \\ _Colin Barker_, Nov 30 2016

%Y Cf. A010385, A000594, A063987, A278579.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Nov 29 2016