login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19 in powers of x.
11

%I #28 Nov 28 2016 05:53:43

%S 1,19,209,1710,11495,66862,347339,1645875,7221520,29668595,115116233,

%T 424720338,1498263563,5076482415,16583497160,52399330389,160586833362,

%U 478482249548,1388989067820,3935549005725,10901608510397,29565343541110,78604103339462

%N Expansion of Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19 in powers of x.

%H Seiichi Manyama, <a href="/A278556/b278556.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: Product_{n>=1} (1 - x^(5*n))^18/(1 - x^n)^19.

%F A278559(n) = 5^2*63*A160460(n) + 5^5*52*A278555(n-1) + 5^7*63*a(n-2) + 5^10*6*A278557(n-3) + 5^12*A278558(n-4) for n >= 4.

%F a(n) ~ sqrt(77/15) * exp(Pi*sqrt(154*n/15)) / (7812500*n). - _Vaclav Kotesovec_, Nov 28 2016

%t CoefficientList[ Series[ Product[(1 - x^(5n))^18/(1 - x^n)^19, {n, 22}], {x, 0, 22}], x] (* _Robert G. Wilson v_, Nov 24 2016 *)

%Y Cf. Product_{n>=1} (1 - x^(5*n))^k/(1 - x^n)^(k + 1): A160461 (k=1), A160462 (k=2), A160463 (k=3), A160506 (k=4), A071734 (k=5), A160460 (k=6), A160521 (k=7), A278555 (k=12), this sequence (k=18), A278557 (k=24), A278558 (k=30).

%K nonn

%O 0,2

%A _Seiichi Manyama_, Nov 23 2016