login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-3,-2,-1,1,2,3}.
6

%I #26 Jul 01 2018 08:38:10

%S 1,3,12,60,311,1674,9173,51002,286384,1620776,9228724,52810792,

%T 303447096,1749612736,10117583749,58656027314,340806249367,

%U 1984018271850,11569932938192,67574451148408,395214184047366,2314315680481252,13567587349336459,79621279809031310

%N Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-3,-2,-1,1,2,3}.

%C By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.

%H Andrew Howroyd, <a href="/A278395/b278395.txt">Table of n, a(n) for n = 0..200</a>

%H C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.

%t frac[ex_] := Select[ex, Exponent[#, x] < 0&];

%t seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -3, 3}] - 1; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];

%t seq[24] (* _Jean-François Alcover_, Jul 01 2018, after _Andrew Howroyd_ *)

%o (PARI) seq(n)={my(v=vector(n), m=sum(i=-3, 3, x^i)-1, p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p,x,1)); v} \\ _Andrew Howroyd_, Jun 27 2018

%Y Cf. A276852, A278391, A278392, A278393, A278394, A278396, A278398.

%K nonn,walk

%O 0,2

%A _David Nguyen_, Nov 20 2016