login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278394
Number of positive meanders (walks starting at the origin and ending at any altitude > 0 that never touch or go below the x-axis in between) with n steps from {-2,-1,1,2}.
7
1, 2, 5, 17, 58, 209, 761, 2823, 10557, 39833, 151147, 576564, 2208163, 8486987, 32714813, 126430229, 489685674, 1900350201, 7387530575, 28763059410, 112142791763, 437774109384, 1710883748796, 6693281604018, 26210038447737, 102724200946467, 402925631267151
OFFSET
0,2
COMMENTS
By convention, the empty walk (corresponding to n=0) is considered to be a positive meander.
LINKS
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
MATHEMATICA
frac[ex_] := Select[ex, Exponent[#, x] < 0&];
seq[n_] := Module[{v, m, p}, v = Table[0, n]; m = Sum[x^i, {i, -2, 2}] - 1; p = 1/x; v[[1]] = 1; For[i = 2, i <= n, i++, p = p*m // Expand; p = p - frac[p]; v[[i]] = p /. x -> 1]; v];
seq[27] (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
PROG
(PARI) seq(n)={my(v=vector(n), m=sum(i=-2, 2, x^i)-1, p=1/x); v[1]=1; for(i=2, n, p*=m; p-=frac(p); v[i]=subst(p, x, 1)); v} \\ Andrew Howroyd, Jun 27 2018
KEYWORD
nonn,walk
AUTHOR
David Nguyen, Nov 20 2016
STATUS
approved