Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Nov 20 2016 07:43:59
%S 0,0,0,0,0,0,0,3,3,0,0,40,74,40,0,1,267,1220,1220,267,1,8,1350,12910,
%T 23640,12910,1350,8,36,5936,100807,368421,368421,100807,5936,36,120,
%U 23565,652343,4703562,8632118,4703562,652343,23565,120,330,84912,3750182
%N T(n,k)=Number of nXk 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly three mistakes.
%C Table starts
%C ...0......0........0...........0..............0................1
%C ...0......0........3..........40............267.............1350
%C ...0......3.......74........1220..........12910...........100807
%C ...0.....40.....1220.......23640.........368421..........4703562
%C ...0....267....12910......368421........8632118........179716850
%C ...1...1350...100807.....4703562......179716850.......6204309386
%C ...8...5936...652343....50473056.....3325788157.....198563803019
%C ..36..23565..3750182...474255829....54735436424....5851197688577
%C .120..84912.19784428..4047341159...813247916326..157794170262819
%C .330.278422.96786947.32112086692.11132424779200.3912513274701995
%H R. H. Hardin, <a href="/A278385/b278385.txt">Table of n, a(n) for n = 1..219</a>
%F Empirical for column k:
%F k=1: [polynomial of degree 7]
%F k=2: [polynomial of degree 15]
%F k=3: [polynomial of degree 31]
%F k=4: [polynomial of degree 63]
%F k=5: [polynomial of degree 127]
%e Some solutions for n=4 k=4
%e ..0..1..1..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .0..0..0..0
%e ..0..1..0..0. .0..1..1..1. .1..0..0..0. .1..1..1..1. .0..1..0..0
%e ..1..0..0..1. .1..1..0..0. .1..0..1..0. .1..1..0..1. .1..1..1..0
%e ..1..0..1..1. .0..0..1..0. .1..1..1..0. .0..1..1..1. .1..1..0..1
%Y Column 1 is A000580(n+1).
%K nonn,tabl
%O 1,8
%A _R. H. Hardin_, Nov 20 2016