login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = Least number with the prime signature of binomial(n,k).
3

%I #23 Nov 22 2016 21:48:06

%S 1,1,1,1,2,1,1,2,2,1,1,4,6,4,1,1,2,6,6,2,1,1,6,6,12,6,6,1,1,2,6,6,6,6,

%T 2,1,1,8,12,24,30,24,12,8,1,1,4,36,60,60,60,60,36,4,1,1,6,12,120,210,

%U 180,210,120,12,6,1,1,2,6,30,210,210,210,210,30,6,2,1,1,12,30,60,60,360,420,360,60,60,30,12,1

%N Triangle read by rows: T(n,k) = Least number with the prime signature of binomial(n,k).

%H Antti Karttunen, <a href="/A278218/b278218.txt">Table of n, a(n) for n = 0..7259; first 120 antidiagonals</a>

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F T(n,k) = A046523(C(n,k)).

%F a(n) = A046523(A007318(n)). [When viewed as a one-dimensional sequence.]

%e The triangle begins as:

%e 1

%e 1, 1

%e 1, 2, 1

%e 1, 2, 2, 1

%e 1, 4, 6, 4, 1

%e 1, 2, 6, 6, 2, 1

%e 1, 6, 6, 12, 6, 6, 1

%e 1, 2, 6, 6, 6, 6, 2, 1

%e 1, 8, 12, 24, 30, 24, 12, 8, 1

%e 1, 4, 36, 60, 60, 60, 60, 36, 4, 1

%e 1, 6, 12, 120, 210, 180, 210, 120, 12, 6, 1

%e 1, 2, 6, 30, 210, 210, 210, 210, 30, 6, 2, 1

%e 1, 12, 30, 60, 60, 360, 420, 360, 60, 60, 30, 12, 1

%e 1, 2, 30, 30, 30, 60, 420, 420, 60, 30, 30, 30, 2, 1

%e 1, 6, 6, 60, 30, 210, 210, 840, 210, 210, 30, 60, 6, 6, 1

%e etc.

%t Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ Binomial[n, k]], {n, 0, 12}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Nov 21 2016 *)

%o (Scheme) (define (A278218 n) (A046523 (A007318 n)))

%Y Cf. A007318, A046523.

%Y Diagonals: A000012, A046523, A278253, A278252.

%K nonn,tabl

%O 0,5

%A _Antti Karttunen_, Nov 19 2016