login
A278208
T(n,k)=Number of nXk 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) or (1,1), with upper left element zero.
7
0, 0, 0, 0, 3, 0, 0, 15, 15, 0, 0, 46, 97, 46, 0, 0, 161, 666, 666, 161, 0, 0, 601, 4827, 8242, 4827, 601, 0, 0, 2208, 34869, 117088, 117088, 34869, 2208, 0, 0, 8053, 251260, 1674402, 3295771, 1674402, 251260, 8053, 0, 0, 29415, 1811189, 23732454, 93838003
OFFSET
1,5
COMMENTS
Table starts
.0.....0........0..........0.............0...............0..................0
.0.....3.......15.........46...........161.............601...............2208
.0....15.......97........666..........4827...........34869.............251260
.0....46......666.......8242........117088.........1674402...........23732454
.0...161.....4827.....117088.......3295771........93838003.........2644587148
.0...601....34869....1674402......93838003......5306819216.......297169006604
.0..2208...251260...23732454....2644587148....297169006604.....33056811286568
.0..8053..1811189..336380248...74502577363..16636687338399...3676498268449668
.0.29415.13056663.4770344900.2100207846025.931945034345185.409137247202506544
LINKS
FORMULA
Empirical for column k:
k=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
k=3: [order 8] for n>9
k=4: [order 19]
k=5: [order 48] for n>49
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1. .0..0..1..1. .0..0..1..1. .0..1..1..0. .0..1..0..1
..0..0..0..0. .0..1..0..1. .1..0..0..1. .1..0..0..0. .0..0..1..1
..1..0..1..0. .0..1..0..1. .1..0..1..1. .0..0..1..1. .0..1..0..0
..1..1..1..1. .1..1..0..0. .0..1..0..1. .0..1..0..0. .0..0..1..0
CROSSREFS
Column 2 is A232077(n-1).
Sequence in context: A277945 A169777 A338464 * A105786 A291802 A221828
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 15 2016
STATUS
approved