login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) or (1,1), with upper left element zero.
1

%I #4 Nov 15 2016 12:24:18

%S 0,161,4827,117088,3295771,93838003,2644587148,74502577363,

%T 2100207846025,59204820850114,1668914682945041,47044781998461473,

%U 1326141579240041036,37382494487271576091,1053771855874680878859,29704682675479642221344

%N Number of nX5 0..1 arrays with every element both equal and not equal to some elements at offset (-1,-1) (-1,0) (-1,1) (0,-1) (0,1) (1,-1) (1,0) or (1,1), with upper left element zero.

%C Column 5 of A278208.

%H R. H. Hardin, <a href="/A278205/b278205.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 19*a(n-1) +189*a(n-2) +1584*a(n-3) +10608*a(n-4) +14412*a(n-5) -85090*a(n-6) -391138*a(n-7) -1606034*a(n-8) -2817596*a(n-9) +5687406*a(n-10) +8027881*a(n-11) +19438705*a(n-12) +68401755*a(n-13) -31364868*a(n-14) -61559855*a(n-15) -91683401*a(n-16) -479455372*a(n-17) +12586341*a(n-18) -58748050*a(n-19) -86449447*a(n-20) +1397633647*a(n-21) -203563888*a(n-22) +375197049*a(n-23) +833933492*a(n-24) -1926809978*a(n-25) +421547099*a(n-26) -230101783*a(n-27) -639000471*a(n-28) +809196262*a(n-29) +51478617*a(n-30) -9474388*a(n-31) -240861719*a(n-32) +36942959*a(n-33) +34157730*a(n-34) -3062038*a(n-35) +203994920*a(n-36) -123672724*a(n-37) -22260448*a(n-38) +9217234*a(n-39) -17678304*a(n-40) +15339168*a(n-41) +1345364*a(n-42) -884528*a(n-43) -95208*a(n-44) -422416*a(n-45) +21888*a(n-46) +7488*a(n-47) +17280*a(n-48) for n>49

%e Some solutions for n=4

%e ..0..1..0..0..1. .0..0..0..1..1. .0..1..0..1..0. .0..0..0..1..1

%e ..0..0..1..1..0. .0..1..1..0..1. .0..0..1..0..1. .1..1..1..0..1

%e ..0..0..1..1..0. .1..0..0..0..1. .1..0..0..0..0. .0..0..0..1..0

%e ..0..1..0..1..1. .0..1..0..0..1. .1..1..1..1..1. .0..1..1..0..0

%Y Cf. A278208.

%K nonn

%O 1,2

%A _R. H. Hardin_, Nov 15 2016