login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with every element both equal and not equal to some elements at offset (-1,0) (-1,1) (0,-1) (0,1) (1,-1) or (1,0), with upper left element zero.
8

%I #4 Nov 13 2016 16:11:28

%S 0,0,0,0,2,0,0,5,5,0,0,13,18,13,0,0,43,126,126,43,0,0,137,737,1476,

%T 737,137,0,0,436,4551,17396,17396,4551,436,0,0,1394,27692,205363,

%U 396024,205363,27692,1394,0,0,4458,169131,2419304,9120939,9120939,2419304

%N T(n,k)=Number of nXk 0..1 arrays with every element both equal and not equal to some elements at offset (-1,0) (-1,1) (0,-1) (0,1) (1,-1) or (1,0), with upper left element zero.

%C Table starts

%C .0.....0.......0..........0.............0................0...................0

%C .0.....2.......5.........13............43..............137.................436

%C .0.....5......18........126...........737.............4551...............27692

%C .0....13.....126.......1476.........17396...........205363.............2419304

%C .0....43.....737......17396........396024..........9120939...........209105063

%C .0...137....4551.....205363.......9120939........408355632.........18218081491

%C .0...436...27692....2419304.....209105063......18218081491.......1580935773900

%C .0..1394..169131...28515138....4797179760.....813097394374.....137264328312479

%C .0..4458.1032173..336046126..110034231906...36285966496008...11916307472109969

%C .0.14258.6300804.3960336818.2523955236624.1619341940295084.1034507705866421424

%H R. H. Hardin, <a href="/A278177/b278177.txt">Table of n, a(n) for n = 1..287</a>

%F Empirical for column k:

%F k=2: a(n) = 3*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6) for n>7

%F k=3: [order 16] for n>18

%F k=4: [order 40] for n>41

%e Some solutions for n=4 k=4

%e ..0..1..1..0. .0..0..1..1. .0..1..1..1. .0..0..0..0. .0..1..1..0

%e ..0..1..0..0. .1..1..0..1. .0..1..0..0. .1..1..1..1. .0..0..0..1

%e ..1..0..1..0. .0..0..0..1. .1..1..0..1. .1..0..1..1. .0..1..1..1

%e ..0..0..1..1. .1..1..0..0. .1..0..0..1. .1..0..0..1. .0..0..0..1

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Nov 13 2016