login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278173 Number of nX4 0..1 arrays with every element both equal and not equal to some elements at offset (-1,0) (-1,1) (0,-1) (0,1) (1,-1) or (1,0), with upper left element zero. 1

%I

%S 0,13,126,1476,17396,205363,2419304,28515138,336046126,3960336818,

%T 46672710626,550039863065,6482242131027,76393487374019,

%U 900300354854882,10610076292064874,125040180523981545,1473603611859143248

%N Number of nX4 0..1 arrays with every element both equal and not equal to some elements at offset (-1,0) (-1,1) (0,-1) (0,1) (1,-1) or (1,0), with upper left element zero.

%C Column 4 of A278177.

%H R. H. Hardin, <a href="/A278173/b278173.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 10*a(n-1) +37*a(n-2) -146*a(n-3) -565*a(n-4) +482*a(n-5) +3756*a(n-6) +1912*a(n-7) -9994*a(n-8) -15361*a(n-9) +6235*a(n-10) +38097*a(n-11) +1681*a(n-12) -74801*a(n-13) -52258*a(n-14) +114355*a(n-15) +199404*a(n-16) +48917*a(n-17) -140329*a(n-18) -74509*a(n-19) +107346*a(n-20) +57236*a(n-21) -67741*a(n-22) -49244*a(n-23) +6742*a(n-24) +39176*a(n-25) +15952*a(n-26) -11581*a(n-27) -5785*a(n-28) +1352*a(n-29) +3815*a(n-30) +911*a(n-31) -1017*a(n-32) -567*a(n-33) -218*a(n-34) +27*a(n-35) +9*a(n-36) +20*a(n-37) +2*a(n-38) +4*a(n-39) -a(n-40) for n>41

%e Some solutions for n=4

%e ..0..0..0..0. .0..1..1..1. .0..0..1..0. .0..0..1..1. .0..1..1..1

%e ..1..1..0..1. .0..0..1..0. .1..0..1..0. .1..1..0..0. .0..1..0..0

%e ..1..0..1..1. .1..0..1..0. .1..0..0..0. .0..1..0..0. .0..1..1..0

%e ..0..0..0..1. .1..1..1..1. .0..0..1..1. .0..1..1..0. .0..0..1..0

%Y Cf. A278177.

%K nonn

%O 1,2

%A _R. H. Hardin_, Nov 13 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 29 05:00 EDT 2022. Contains 354910 sequences. (Running on oeis4.)