login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278046 Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v. 6

%I

%S 1,4,18,44,124,186,424,636,1038,1378,2368,2852,4516,5510,7030,8734,

%T 12542,14168,19526,22206,26658,30728,40342,44190,54590,61402,72328,

%U 80196,99684,105644,129514,143162,161422,176926,201566,214538,255386,277160,307736,329096,384856,402412,466826,499166

%N Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v.

%C Note that the sum of the reciprocals of these products is 1.

%H J. Lehner and M. Newman, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa15/aa15114.pdf">Sums involving Farey fractions</a>, Acta Arithmetica 15.2 (1969): 181-187.

%e When n = 4, v = [1,4,3,2,3,4,1], so a(4) = 1*4 + 4*3 + 3*2 + 2*3 + 3*4 + 4*1 = 44.

%p Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:

%p ans:=[];

%p for n from 1 to 50 do

%p t1:=denom(Farey(n));

%p t2:=add( t1[i]*t1[i+1],i=1..nops(t1)-1);

%p ans:=[op(ans),t2];

%p od:

%p ans;

%Y Cf. A006843, A005728, A240877.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Nov 22 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 01:22 EDT 2021. Contains 346340 sequences. (Running on oeis4.)