Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 24 2016 19:38:17
%S 1,4,18,44,124,186,424,636,1038,1378,2368,2852,4516,5510,7030,8734,
%T 12542,14168,19526,22206,26658,30728,40342,44190,54590,61402,72328,
%U 80196,99684,105644,129514,143162,161422,176926,201566,214538,255386,277160,307736,329096,384856,402412,466826,499166
%N Let v = list of denominators of Farey series of order n (see A006843); a(n) = sum of products of adjacent terms of v.
%C Note that the sum of the reciprocals of these products is 1.
%H J. Lehner and M. Newman, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa15/aa15114.pdf">Sums involving Farey fractions</a>, Acta Arithmetica 15.2 (1969): 181-187.
%e When n = 4, v = [1,4,3,2,3,4,1], so a(4) = 1*4 + 4*3 + 3*2 + 2*3 + 3*4 + 4*1 = 44.
%p Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end:
%p ans:=[];
%p for n from 1 to 50 do
%p t1:=denom(Farey(n));
%p t2:=add( t1[i]*t1[i+1],i=1..nops(t1)-1);
%p ans:=[op(ans),t2];
%p od:
%p ans;
%Y Cf. A006843, A005728, A240877.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Nov 22 2016