Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:46:17
%S 4,144,324,400,441,1024,1444,2304,2401,10404,14400,23104,32041,32400,
%T 33124,40000,40401,44100,101124,102400,103041,110224,114244,121104,
%U 131044,144400,203401,204304,213444,230400,232324,240100,300304,301401,421201,1004004
%N Squares whose largest decimal digit is 4.
%C A subsequence of A158082, in turn a subsequence of A000290.
%H Colin Barker, <a href="/A277948/b277948.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A277961(n)^2. - _M. F. Hasler_, Nov 12 2017
%F Intersection of A000290 and A277966. - _M. F. Hasler_, Nov 15 2017
%t Select[Range[1100]^2,Max[IntegerDigits[#]]==4&] (* _Harvey P. Dale_, Jul 01 2017 *)
%o (PARI) L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==4, listput(L, n^2))); Vec(L)
%o (Magma) [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 4]; // _Vincenzo Librandi_, Nov 06 2016
%Y Cf. A000290 (the squares).
%Y Cf. A277961 (square roots of these terms).
%Y Cf. A277946, A277947, A295015, ..., A295019 (analog for largest digit = 2, 3, 5, ..., 9).
%Y Cf. A058412, A058411, ..., A058474 and A136808, A136809, ..., A137147 for other restrictions on digits of squares.
%K nonn,base
%O 1,1
%A _Colin Barker_, Nov 05 2016