login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..2 arrays with every element plus 1 mod 3 equal to some element at offset (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.
1

%I #4 Nov 05 2016 11:36:43

%S 0,74,2353,84970,2967962,103960169,3638916907,127378891305,

%T 4458779090218,156075459353260,5463275862035992,191236872538989228,

%U 6694068173580106896,234319606216204278149,8202139030768885667342,287108218400489269268262

%N Number of nX4 0..2 arrays with every element plus 1 mod 3 equal to some element at offset (-1,0) (-1,1) (0,-1) (0,1) or (1,0), with upper left element zero.

%C Column 4 of A277945.

%H R. H. Hardin, <a href="/A277941/b277941.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A277941/a277941.txt">Empirical recurrence of order 70</a>

%F Empirical recurrence of order 70 (see link above)

%e Some solutions for n=4

%e ..0..1..0..2. .0..2..1..2. .0..1..0..0. .0..1..2..0. .0..0..1..0

%e ..1..2..1..0. .1..0..1..0. .2..2..1..1. .0..0..2..1. .1..2..2..2

%e ..1..1..2..1. .2..0..1..2. .0..1..0..2. .2..2..1..0. .2..0..2..0

%e ..0..1..1..0. .2..1..1..0. .0..0..0..1. .1..1..0..2. .1..1..2..1

%Y Cf. A277945.

%K nonn

%O 1,2

%A _R. H. Hardin_, Nov 05 2016