Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Apr 03 2017 16:16:34
%S 0,1,4,20,120,780,5382,38638,285762,2162033,16655167,130193037,
%T 1030117023,8234025705,66391916397,539360587341,4410492096741,
%U 36274113675369,299864297741292,2490192142719336,20764402240048267,173784940354460219,1459360304511145146
%N Number of positive walks with n steps {-4,-3,-2,-1,0,1,2,3,4} starting at the origin, ending at altitude 1, and staying strictly above the x-axis.
%H Alois P. Heinz, <a href="/A277920/b277920.txt">Table of n, a(n) for n = 0..1054</a>
%H C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, <a href="https://arxiv.org/abs/1609.06473">Explicit formulas for enumeration of lattice paths: basketball and the kernel method</a>, arXiv:1609.06473 [math.CO], 2016.
%p b:= proc(n, y) option remember; `if`(n=0, `if`(y=1, 1, 0),
%p add((h-> `if`(h<1, 0, b(n-1, h)))(y+d), d=-4..4))
%p end:
%p a:= n-> b(n, 0):
%p seq(a(n), n=0..23); # _Alois P. Heinz_, Nov 12 2016
%t b[n_, y_] := b[n, y] = If[n == 0, If[y == 1, 1, 0], Sum[Function[h, If[h < 1, 0, b[n - 1, h]]][y + d], {d, -4, 4}]];
%t a[n_] := b[n, 0];
%t Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Apr 03 2017, after _Alois P. Heinz_ *)
%Y Cf. A276902, A276852, A276901, A276903, A276904.
%K nonn,walk
%O 0,3
%A _David Nguyen_, Nov 04 2016