login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Size of the largest subset of Z/nZ fixed by x -> x^2.
3

%I #27 Jan 02 2023 12:30:52

%S 1,2,2,2,2,4,4,2,4,4,6,4,4,8,4,2,2,8,10,4,8,12,12,4,6,8,10,8,8,8,16,2,

%T 12,4,8,8,10,20,8,4,6,16,22,12,8,24,24,4,22,12,4,8,14,20,12,8,20,16,

%U 30,8,16,32,16,2,8,24,34,4,24,16,36,8,10,20,12,20,24,16,40,4,28,12,42,16,4,44

%N Size of the largest subset of Z/nZ fixed by x -> x^2.

%C Question raised by _David W. Wilson_, equivalent formulae given independently by _Don Reble_ and _Robert Israel_, cf. link to the SeqFan list.

%C "Fixed" means that f(S) = S, for the subset S and f = x -> x^2. The largest stable or "invariant" subset would be Z/nZ itself.

%H David W. Wilson, <a href="/A277847/b277847.txt">Table of n, a(n) for n = 1..10000</a>

%H Don Reble, in reply to D. Wilson, <a href="http://list.seqfan.eu/oldermail/seqfan/2016-November/016878.html">Mapping problem</a>, SeqFan list, Nov. 2016. (Click "Next" twice for R. Israel's reply.)

%F Multiplicative with a(p^e) = oddpart(phi(p^e))+1, where oddpart = A000265, phi = A000010.

%F Multiplicative with a(p^e) = 2 if p = 2; oddpart(p-1)*p^(e-1) + 1 if p > 2.

%e a(25) = 6 is the cardinal of S = {0, 1, 6, 11, 16, 21}, the largest set of residues modulo 25 fixed by the mapping n -> n^2. - _David W. Wilson_, Nov 08 2016

%p f:= proc(n) local F; F:= ifactors(n)[2]; convert(map(proc(t) local p; p:=numtheory:-phi(t[1]^t[2]); 1+p/2^padic:-ordp(p,2) end proc,F),`*`) end proc: # _Robert Israel_, Nov 09 2016

%t oddpart[n_] := n/2^IntegerExponent[n, 2];

%t a[n_] := a[n] = Module[{p, e}, If[n == 1, 1, Product[{p, e} = pe; oddpart[ EulerPhi[p^e]] + 1, {pe, FactorInteger[n]}]]];

%t Array[a, 100] (* _Jean-François Alcover_, Jul 29 2020 *)

%o (PARI) A277847(n)={prod( i=1,#n=factor(n)~, if(n[1,i]>2, 1 + n[1,i]>>valuation(n[1,i]-1,2) * n[1,i]^(n[2,i]-1), 2))}

%o (PARI) a(n,f=factor(n)~)=prod(i=1,#f,(n=eulerphi(f[1,i]^f[2,i]))>>valuation(n,2)+1) \\ about 10% slower than the above

%Y Cf. A000010.

%K nonn,mult

%O 1,2

%A _M. F. Hasler_, Nov 10 2016