login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of '5' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).
3

%I #19 Jan 01 2021 11:52:39

%S 0,0,1,22,343,4665,58993,713385,8368417,96029849,1083755281,

%T 12072120713,133066886145,1454125651577,15775824417009,

%U 170103923182448,1824496021947951,19479528120714094,207140960219486637,2194866392318323180,23183231824417799723

%N Number of '5' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).

%H David A. Corneth, <a href="/A277835/b277835.txt">Table of n, a(n) for n = 0..998</a>

%F a(n) = A277849(n) = A083449(n) = A277830(n) - 1 for n < 5,

%F a(5) = A277836(5) + 1, a(n) = A277836(n) + 7*10^(n-6) for n >= 6.

%F More generally, for m = 0, ..., 9, let a[m] denote A277830, ..., A277838 and A277849, respectively. Then a[0](n) = a[n](n) = a[m](n) + 1 for all m > n >= 0, and a[m-1](n) = a[m](n) + (m+1)*10^(n-m) for all n >= m > 1.

%e For n = 2 there is only one digit '5' in the sequence 0, 1, 2, ..., 12.

%e For n = 3 there are 11 + 10 = 21 more digits '5' in { 15, 25, ..., 45, 50, ..., 59, 65, ..., 115 }, where 55 accounts for two '5's.

%o (PARI) print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==5,digits(k)))))

%o (PARI) A277835(n,m=5)=if(n>m,A277835(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ _M. F. Hasler_, Nov 02 2016

%Y Cf. A277830 - A277838, A277849, A277635, A272525, A083449, A014824.

%K nonn,base

%O 0,4

%A _M. F. Hasler_, Nov 01 2016

%E More terms from _Lars Blomberg_, Nov 05 2016

%E Removed incorrect b-file. - _David A. Corneth_, Dec 31 2020