login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277798
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 1", based on the 5-celled von Neumann neighborhood.
4
1, 0, 100, 11, 10000, 1111, 1000000, 111111, 100000000, 11111111, 10000000000, 1111111111, 1000000000000, 111111111111, 100000000000000, 11111111111111, 10000000000000000, 1111111111111111, 1000000000000000000, 111111111111111111, 100000000000000000000
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Rule numbers 1, 9, 17, 25, 257, 265, 273 and 281 all generate this sequence.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Nov 01 2016: (Start)
G.f.: (1 - x^2 + 11*x^3)/((1 - x)*(1 + x)*(1 - 10*x)*(1 + 10*x)).
a(n) = 101*a(n-2) - 100*a(n-4) for n>3.
a(n) = (-10+89*(-10)^n+10*(-1)^n+91*10^n)/180. (End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=1; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[i, 2*i-1]], 10], {i, 1, stages-1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Oct 31 2016
STATUS
approved