login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k > 2 such that lambda(k)^2 divides k-1, where lambda(k) = A002322(k).
1

%I #28 Apr 21 2024 09:59:48

%S 2320690177,17069520863233,42182344790209,65465530560001,

%T 3432376805760001,13322002122777601,20388795375960001,

%U 129009714848870401,580007888606160001,1096591987029196801,3029756968906340401,5806765663003468801,6213994663149504001,6367205158826803201,7802569551798000001,10319507991273499201

%N Numbers k > 2 such that lambda(k)^2 divides k-1, where lambda(k) = A002322(k).

%C Squarefree numbers k > 2 such that (p-1)^2 | k-1 for every prime p|k.

%C For the first five terms, lambda(k)^2 | phi(k). - _Thomas Ordowski_, Apr 11 2017

%H Amiram Eldar, <a href="/A277720/b277720.txt">Table of n, a(n) for n = 1..47</a> (terms below 10^22, calculated using data from Claude Goutier)

%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.

%o (PARI) isok(n) = (n % lcm(znstar(n)[2])^2) == 1; \\ _Michel Marcus_, Apr 22 2017

%Y Subsequence of A002997 and of A277389.

%Y Cf. A002322.

%K nonn

%O 1,1

%A _Thomas Ordowski_ and _Charles R Greathouse IV_, Oct 28 2016

%E a(7)-a(16) from _Max Alekseyev_, Apr 23 2017