login
Numbers k such that k/10^m == 4 mod 10, where 10^m is the greatest power of 10 that divides n.
10

%I #9 Nov 08 2016 07:42:21

%S 4,14,24,34,40,44,54,64,74,84,94,104,114,124,134,140,144,154,164,174,

%T 184,194,204,214,224,234,240,244,254,264,274,284,294,304,314,324,334,

%U 340,344,354,364,374,384,394,400,404,414,424,434,440,444,454,464,474

%N Numbers k such that k/10^m == 4 mod 10, where 10^m is the greatest power of 10 that divides n.

%C Positions of 4 in A065881.

%C Numbers having 4 as rightmost nonzero digit in base 10. This is one sequence in a 10-way splitting of the positive integers; the other nine are indicated in the Mathematica program.

%H Clark Kimberling, <a href="/A277591/b277591.txt">Table of n, a(n) for n = 1..10000</a>

%t z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]

%t p[b_, d_] := Flatten[Position[a[b], d]]

%t p[10, 1] (* A277588 *)

%t p[10, 2] (* A277589 *)

%t p[10, 3] (* A277590 *)

%t p[10, 4] (* A277591 *)

%t p[10, 5] (* A277592 *)

%t p[10, 6] (* A277593 *)

%t p[10, 7] (* A277594 *)

%t p[10, 8] (* A277595 *)

%t p[10, 9] (* A277596 *)

%Y Cf. A277588-A277590, A277592-A277596.

%K nonn,easy,base

%O 1,1

%A _Clark Kimberling_, Nov 05 2016